Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids.
نویسندگان
چکیده
The endocannabinoid system, most popularly known as the target of the psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), is a signaling network that modulates a diverse range of physiological processes including nociception, behavior, cognitive function, appetite, metabolism, motor control, memory formation, and inflammation. While THC and its derivatives have garnered notoriety in the eyes of the public, the endocannabinoid system consists of two endogenous signaling lipids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide), which activate cannabinoid receptors CB1 and CB2 in the nervous system and peripheral tissues. This review will focus on the recent efforts to chemically manipulate 2-AG signaling through the development of inhibitors of the 2-AG-synthesizing enzyme diacylglycerol lipase (DAGL) or the 2-AG-degrading enzyme monoacylglycerol lipase (MAGL), and assessing the therapeutic potential of DAGL and MAGL inhibitors in pain, inflammation, degenerative diseases, tissue injury, and cancer.
منابع مشابه
Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling
Introduction: Carbon nanotubes (CNTs) have shown enormous potential in neuroscience. Nerve growth factor (NGF)-CNTs complex promotes the neuronal growth, however, the underlying mechanism(s) have remained elusive. Based on the interplay between NGF and the endocannabinoid system, involvement of the neuroprotective endocannabinoid, 2-arachidonoyl glycerol (2-AG), was investigated in the mechanis...
متن کاملChemical probes of endocannabinoid metabolism.
The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which ...
متن کاملNpgrj_nchembio_86 373..378
D9-Tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB1, is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach comp...
متن کاملDAGLβ Inhibition Perturbs a Lipid Network Involved in Macrophage Inflammatory Responses
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLα and DAGLβ. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLβ in living systems....
متن کاملSelective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects
2-Arachidonoylglycerol (2-AG) and anandamide are endocannabinoids that activate the cannabinoid receptors CB1 and CB2. Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that for anandamide is mediated by fatty acid amide hydrolase (FAAH), and for 2-AG is thought to involve monoacylglycerol lipase (MAGL). FAAH inhibitors produce a select subset of the behavioral effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical Society reviews
دوره 43 19 شماره
صفحات -
تاریخ انتشار 2014